
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 3, MARCH 2019 453

A Locality-Aware Compression Scheme for Highly
Reliable Embedded Systems

Juhyung Hong , Jeongbin Kim, Sangwoo Han, and Eui-Young Chung , Member, IEEE

Abstract—Dynamic random access memory (DRAM)
reliability has become one of the critical issues in embedded
systems, as DRAM process technology advances with the
increase in bit error probability. Unfortunately, redundant
error-correction code (ECC) chips cannot be applied to embed-
ded systems since cores and DRAMs are tightly coupled without
a dual in-line memory module (DIMM) slot to account for
the form factor, cost, and limited pin count. Therefore, ECC
parities are typically placed in the same physical array where
the user and system data reside. This coexistence eventually
deteriorates data locality, which could be the critical factor
in DRAM performance degradation. To address this issue,
we propose an ECC scheme called locality-aware compression
(LoComp) which integrates a compression algorithm, DRAM
data layout, and memory controller especially optimized for
embedded systems. We focus on the locality of the dataset and
its corresponding metadata, as well as spatial data locality in the
design of DRAM data layout, which reduces the number of row
activations. The major feature in a compression algorithm is
adjusting the misalignment of data streams caused by the data
packing in many embedded systems. Moreover, we specialize the
memory controller to reduce DRAM access for ECC parities
and compression flags. The core technologies for the memory
controller are the adoption of a set of small caches for metadata
and the support of partial write operation without changing the
DRAM interface. LoComp+, an enhanced version of LoComp,
further reduces DRAM access for metadata by placing the
metadata close to the corresponding data. In the experiment,
previous works increase the DRAM access time from 68%
to over twice the value compared to ECC DIMM. Whereas,
LoComp and LoComp+ show reduced performance degradation
by 33% and 48%, respectively. In other words, LoComp
and LoComp+ substantially improved performance from
between 13% and 33% compared to previous embedded ECC
schemes.

Index Terms—Compression, dynamic random access memory
(DRAM), embedded systems, error-correction code (ECC), local-
ity, reliability, single error correction double error detection
(SECDED).

I. INTRODUCTION

SCALING of dynamic random access memory (DRAM)
process technology continuously reduces the DRAM

Manuscript received June 1, 2017; revised August 14, 2017 and January
12, 2018; accepted March 5, 2018. Date of publication March 23, 2018; date
of current version February 18, 2019. This work was supported in part by the
National Research Foundation of Korea under Grant 2016R1A2B4011799, in
part by the Ministry of Trade, Industry and Energy under Grant 10080722
and the Korea Semiconductor Research Consortium Support Program for the
Development of the Future Semiconductor Device, and in part by the Samsung
Electronics Company Ltd., Hwasung, Korea. This paper was recommended
by Associate Editor J. Henkel. (Corresponding author: Eui-Young Chung.)

The authors are with the School of Electrical and Electronic Engineering,
Yonsei University, Seoul 03722, South Korea (e-mail: eychung@yonsei.ac.kr).

Digital Object Identifier 10.1109/TCAD.2018.2818692

cost-per-bit. However, concerns have been raised over DRAM
reliability stemming from deep submicron effects, such as the
limited number of electrons, process variation, and coupling
effects between intercells [1]. Such negative impacts on relia-
bility are among the critical bottlenecks to the further scaling
of DRAM technology. To address this concern, server and/or
datacenter systems are equipped with error-correction code
dual in-line memory modules (ECC DIMMs) or a high-level
reliability technique called Chipkill [2]. These technologies
isolate ECC parities (ECCs) from the data by placing the bits
into a separate DRAM chip; hence, data locality is not affected
by ECCs. In other words, system performance is not degraded
by adopting these technologies from the locality perspective.

The reliability issue of DRAMs is also critical in embedded
systems and many have adopted ECC schemes. Unfortunately,
aforementioned ECC techniques are not applicable to embed-
ded systems because of the form factor issue, costs, limited
pin counts, and so on. These limitations force system design-
ers to place ECCs and data within the same physical DRAM
space, which leads to two side effects.

First, the processor in the embedded system requires addi-
tional bandwidth and latency for ECC DRAMs. In server
systems, ECCs are stored in a separate DRAM chip; hence
the data and its ECC are fetched in parallel manner. In
contrast, embedded systems serially fetch them since they
are located in the same physical DRAM, which results in
additional bandwidth consumption per chip or performance
degradation.

Second, the mix of data and corresponding ECCs in the
same physical DRAM changes the physical address distance
between the data, which strongly impacts data locality in the
row buffer of DRAM. DRAM addressing is performed in
multiple phases [3]. The first phase requires the long latency of
precharge operation and row activation to move the entire row
data into the row buffer. In the second phase, the row buffer
serves data access after column access latency. Therefore, the
change of data locality can increase latency for the first phase,
and eventually degrade memory access performance.

Although these side effects are nonmarginal, many embed-
ded systems are employing ECC schemes to address con-
cerns over DRAM reliability. For instance, solid-state drives
(SSDs) use parity or ECC for mapping tables in DRAM
despite the bandwidth and performance degradation [4], since
data center systems require end-to-end data integrity, which
encompasses both the nonvolatile memory and internal buffer
memory [5]. Other interesting embedded ECC schemes that
maintain DRAM reliability without redundant ECC chips are
introduced in [6]–[9].

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://orcid.org/0000-0001-8025-6791
https://orcid.org/0000-0003-2013-8763

454 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 3, MARCH 2019

One promising approach to tackle the abovementioned side
effects is compression. Simply speaking, compression reduces
the size of data to be fetched from DRAMs and largely reduces
the first side effect, which is the increased bandwidth by ECCs.
The storage overhead due to ECCs can be also reduced. Many
studies have proposed compression techniques for cache [10],
[11], main memory [12]–[14], SSD [15], [16], and GPU [17]
to improve performance and/or storage utilization. To identify
compression of data, it is necessary to have a compression flag
(CF), which increases the complexity of data fetched from the
DRAMs. The compression ratio can vary for each compress-
ible data, which also results in complex address computation.
To reduce this complexity, a fixed-size data layout has been
used in many compressors. This method is advantageous when
the compression ratio is higher than a certain threshold. In this
case, the target data is compressed enough to fit into the fixed
size with the ECC and the processor can fetch a cache line
with a single burst like normal data.

On the other hand, if the compression ratio of the target
data is lower than the threshold, the compressed data and ECC
cannot fit into the fixed size format. In this case, the leftovers1

must be stored somewhere else. Moreover, to track the leftover,
the CF should keep the information on the leftover location. It
is inevitable that the memory will be accessed multiple times
to fetch the leftovers. An even worse case is when the fit-in
data, leftovers, and CF are placed in different DRAM rows.
In this case, the processor needs to open the row more than
once, which results in expensive timing overhead compared to
when these are placed in the same row. However, placing these
three components in the same row could worsen the spatial
locality of the DRAM row buffer if the given workload has
a sequential property, since part of sequential data is expelled
to a different location because of limited row size. Therefore,
the data layout in compression schemes critically determines
the overall performance, which is a challenging task.

Another issue in compression schemes is the placement of
the compression engine. It is natural to place the compres-
sion engine with a last-level cache (LLC) at the early stage,
since the LLC is the entry point to the main memory from the
processor core. However, this approach increases the system
bus traffic caused by the leftovers when the compression rate
is lower than the threshold. Also, the storage controller in
several embedded systems often accesses the main memory
directly for paging. A good example of these systems is SSDs,
where the page mapping table is frequently swapped in and
out between the DRAM buffer and NAND flash memories.
This trend directs the compression engine to be placed at the
memory controller.

The last two issues to be discussed involve the access effi-
ciency of metadata (e.g., CF and ECC). First, it is obvious
that the CF should always be read before accessing the data
in DRAM to check whether the data is compressed or not.
Such overhead can be efficiently managed by adopting a flag
cache for storing frequently accessed CFs [12], since the CFs
of multiple cache lines can be accessed together with a single
DRAM burst. The impact of the flag cache is highly dependent
on its hit ratio.

1It can be data or ECCs depending the design of the data layout.

Second, the read–modify–write operation for modifying
the metadata strongly impacts metadata access efficiency [9].
Since the length of the metadata for a cache line is usually
shorter than a single DRAM burst, two DRAM bursts are
required to modify the metadata. Such overhead can be greatly
reduced by a partial write operation.

In short, the data layout of a compression scheme is very
important in the performance of embedded systems supporting
ECCs. Improvement of the compression ratio and data access
efficiency is another crucial factor in the performance of com-
pression schemes. These factors have directed us to propose a
novel compression scheme called locality-aware compression
(LoComp), which can be summarized as follows.

1) LoComp provides a data layout aimed at minimally
impacting the data locality of applications.

2) In conjunction with the proposed data layout, LoComp
effectively manages ECCs and CFs by utilizing a partial
write operation. Partial write operations allow access to
a byte (or once among bursts) of DRAM data, which is
very effective in reducing extra memory access.

3) We also enhanced LoComp for byte (or bit)-level data
packing algorithms. Therefore, we propose OB�I, by
extending the Base-delta-immediate (B�I) compression
algorithm [18]. OB�I shows higher compression ratio
for these applications.

4) We further enhanced LoComp by reorganizing CFs
through a tradeoff between the compression ratio and
DRAM access time. We call this enhanced version
LoComp+.

5) To demonstrate the effectiveness of LoComp and
LoComp+, we implemented a system level simula-
tion framework by extending GEM5 simulator [19] and
DRAMSim2 [20].

The remainder of this paper is organized as follows. First,
we review important compression methods and the related
ECC schemes in Section II. In Section III, we address the
importance of aforementioned issues by showing motivat-
ing examples. We discuss LoComp and LoComp+, including
their data layout, compression method, and other details in
Section IV. Finally, we prove the effectiveness of LoComp
through extensive experiments in Section V followed by the
conclusion in Section VI.

II. BACKGROUND AND RELATED WORKS

In this section, we summarize prior embedded ECC schemes
specialized for main memory in four categories. First, we
review the concept of embedded ECC schemes and compres-
sion in main memory. The next two categories are dedicated to
ECC and compression algorithms in Sections II-B and II-C,
respectively. Finally, data layout and metadata management
issues are addressed as the third category in Section II-D.

A. Compression and Embedded ECC in Main Memory

Fig. 1(a) depicts the flow of a cache line between the LLC
and DRAMs. In most systems, the LLC line size is typically
64B. Also, a DRAM array consists of multiple DRAM chips.
More specifically, an 8 ×8 (8-bit wide) chips DRAM consists
of 8 DRAM chips, each of which has 8 data IO pins. In this

HONG et al.: LoComp SCHEME FOR HIGHLY RELIABLE EMBEDDED SYSTEMS 455

(a) (b)

Fig. 1. Data flow and compression of cache lines in DRAM. (a) Data flow
of a 64B cache line. (b) Compression example of cache lines in DRAM.

configuration, the 64B of a cache line is formed by 8B from
each DRAM. Also, each DRAM chip has an internal buffer
called the row buffer [3]. Typically, it is implemented as sense
amplifiers and its size is 8 Kbit. When a cache miss occurs
in the LLC, a request for the cache line is transmitted to the
memory controller through a system bus. And the memory
controller conveys DRAM access commands on the DDRx
interface. If the requested cache line is in the row buffer of
DRAM, called the row buffer hit, the memory controller can
access the cache line after column access latency. Otherwise,
if the requested cache line is not in the row buffer, called
the row buffer miss, the cache line access requires the addi-
tional latency of precharge and row activation in a DRAM
cell array.

To reduce this latency, hardware compression in the memory
controller is a promising approach. The compression is per-
formed in a quantized manner. More specifically, a 64B cache
line is compressible if its compression ratio is higher than the
threshold. As an example, if both of two consecutive cache
lines requested to DRAM are compressible higher than or
equal to 50%, two cache lines can be compressed to one cache
line and stored to the same row address by one burst write as
shown in Fig. 1(b). In addition, if two cache lines have tempo-
ral locality in memory read requests, the request for the second
cache line causes the row buffer hit. In short, compression
changes the layout of cache lines in the row buffer.

In embedded ECCs, the coexistence of cache lines and
corresponding ECCs also impacts on the layout of the row
buffer. There are two major approaches for the data layout:
1) the deterministic offset approach and 2) the pointer-based
approach. Fig. 2(a) shows the deterministic offset approach
in case of DRAM write. When a cache line is evicted from
the LLC, each 8B (CL0–CL7) of a 64B cache line and
the corresponding ECCs are stored to the predetermined off-
set in a chip. Therefore, the address computation is very
simple, but the memory space overhead owing to ECCs can-
not be neglected. The memory-efficient pointer-based method
shown in Fig. 2(b) uses a pointer to access the leftover
directly.

B. Embedded ECC Algorithms

Typical memory systems for server systems adopt sin-
gle error correction, double error detection (SECDED) ECC
algorithms with a separate memory chip to store ECCs.

(a) (b)

Fig. 2. Data flow and layout for a 64B cache line and ECC in embedded
ECC. (a) Deterministic method. (b) Pointer method.

Chipkill-level ECC is another option, especially when data
integrity is a critical concern. It basically applies a symbolic
correction code [7], [14] and/or a multiple tiers code [7], [8]
to handle more error-prone conditions compared to SECDED
ECC algorithms. Owing to its nature, chipkill-level ECCs
require more redundant areas for ECC parities than SECDED
ECC algorithms. Memory systems with chipkill-level ECC
algorithms embed ECC parities in the data space for reducing
extra ECC parity chips.

On the other hand, area efficiency is a more critical factor
in client and/or embedded systems. For this reason, SECDED
embedded ECC algorithms are widely adopted, as discussed
in [6], [9], [12], and [13]. These are often implemented based
on a (72, 64) Hamming code to encode a 64-bit message to
a 72-bit codeword with eight redundant bits, where seven bits
are used as Hamming parity (m = 7) and the remaining one
bit is used as even parity.

C. Compression Algorithms for Embedded ECC Schemes

B�I [18] and frequent pattern compression (FPC) [21]
are widely adopted for main memory compression [22].
Compression algorithms based on LZ or Huffman coding have
high latency/area overhead but provide high compression ratio.
In contrast, B�I and FPC can be implemented with sim-
ple hardware, which takes 1 or 2 cycles for compression or
decompression. Therefore, these algorithms are suitable for
embedded systems. B�I exploits the similarity between the
words within a cache line. A cache line can be substantially
compressed, since B�I stores a base word and deltas which
are the difference between the base word and other words.
Recent works have modified B�I to have more compressible
cache lines by using multiple bases [18] or increasing the base
size and delta size [14]. FPC also exploits word-level similar-
ity like B�I. In FPC, the reference pattern is not given by
the base word of each line, but the special patterns are prede-
termined. For identified words to be compressed, it encodes
each word as a predetermined prefix and compressed data.
FPC has high compression ratio, especially for sign-extended
words and words consisting of repetitive bytes. The compres-
sion ratios of these algorithms depends on address alignment.
More specifically, the similarity between compression chunks
is low if the start address of a cache line is misaligned with
the start address of the chunk.

Although LoComp is a generalized approach that can be
integrated with any main memory compression algorithm,
LoComp adopts B�I and FPC that are well suitable for

456 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 3, MARCH 2019

embedded systems. Moreover, LoComp provides an extended
feature to manage such misalignment to achieve higher com-
pression ratio.

D. Data Layout and Metadata Management for Embedded
ECC Schemes

As data layout and metadata management mainly contribute
to memory access efficiency, they are often synergistically
designed with compression algorithms to achieve globally
optimal memory access efficiency. In this section, we first
review compression algorithm-independent data layout tech-
niques, and then address data layout techniques customized
for specific compression algorithms.

1) Compression Algorithm Independent Data Layout: Data
layouts for embedded ECC schemes have been studied to
improve specific performance metrics.

Mini-rank [6] focuses on dynamic power consumption,
which is one of the critical issues in DIMM-type memory
systems. To address this issue, the authors split a memory
rank into subranks, which are controlled independently by
an additional controller on DIMM. For ECC implementation,
they adopted an embedded ECC scheme and data layout with
Chinese remainder mapping (CRM) [23] that eliminates the
overhead of a division operation.

While Mini-rank focuses on power efficiency, E3CC [9]
concentrates on the bandwidth utilization of DDRx by sup-
porting full-rank architecture. The data layout in the E3CC
architecture is exactly matched to the burst size of the main
memory. When a cache line is accessed by the host processor,
the corresponding ECC line is simultaneously fetched. Only
one out of eight parities in the ECC line is utilized for the
cache line, and the remaining seven parities are stored in the
ECC cache for future use. E3CC also tackled the address map-
ping scheme by employing biased CRM (BCRM), a modified
CRM to maintain row locality.

Virtualized ECC [7] proposes two-tier ECC protection for
power-efficient chipkill-level ECCs. For this purpose, each tier
detects and corrects errors independently. The OS takes charge
of address translation for two-tier codes from the physical
address of LLC, like virtual address translation. LOT-ECC [8]
further generalizes Virtualized ECC by employing multiple
levels of localized and tiered error protection to reduce latency.
However, it entails larger area overhead than Virtualized ECC.

2) Compression Algorithm Specific Data Layout: The
compression-specific data layout requires a more sophisti-
cated design than the compression-independent data layout.
In other words, it should consider the location of metadata,
which indicates whether the corresponding data is compressed
or not.

MemZip [12] tries to reduce the number of write/read
(WR/RD) commands by compressing data into subranked
memory organization. For instance, if all cache lines are com-
pressed by 50%, the main memory bandwidth utilization can
be doubled. It is obvious that MemZip is quite effective in
reducing the WR/RD command execution. For this purpose,
MemZip organizes the 8 KB row buffer of a memory chip
with 112 data cache lines, 14 ECC lines, and a metadata line.
Therefore, 16 data cache lines become leftovers because of the
ECC lines and metadata lines. The leftovers must be placed

in a different row, called an overflow row. There is also extra
performance overhead from opening rows multiple times due
to the overflow rows.

To avoid the metadata overhead, COP [13] implements the
identification of compression with SECDED. Thus, a row
buffer of main memory can contain more data cache lines
compared to MemZip. However, the main drawback is the
undetectable errors of SECDED, with error probability of
approximately 7.8 × 10−3, in the case of m = 7 [24]. COP
eventually keep aliasing cache lines which caused confusion
in compression identification. COP defines a separate address
region for leftovers. Each cache line includes a pointer to the
leftovers when the cache line is incompressible. In this case,
COP requires additional memory access for the leftovers. It
also requires the LLC to have a cache tag for pointers to effi-
ciently retrieve or invalidate the pointers. COP may degrade
the spatial locality since it places leftovers in a different
address region.

FECC [14] place ECCs with compressed data similar to
COP, but its target is chipkill-level, which requires larger
space for ECCs compared to the aforementioned works. FECC
places the protected CF ahead of the corresponding data cache
line and encodes CF along with the data for ECCs. With this
layout, it is possible to reduce the memory access frequency.
The limitation of FECC is the predetermined addressing of
leftovers without considering the locality.

III. MOTIVATING EXAMPLE

In this section, we provide motivating examples about the
applicability of compression and the impact of the data lay-
out or data locality in the row buffer of DRAM. Memory
compression increases memory capacity without area over-
head in modern embedded or mobile systems, which can
reduce the storage access that has large latency. For exam-
ple, in typical SSDs, the huge mapping information of the
flash translation layer (FTL) is cached to DRAMs to hide
the long latency of NAND flash memories. 4TB SSD [25]
adopts 4 GB DRAM for this purpose. However, the increase of
DRAM capacity causes the increase of cost as well as power
consumption. To mitigate this issue, compression is one of
the most appropriate candidates by compressing metadata to
be stored to the DRAM cache. On the other hand, compres-
sion can become an overhead for many other programs (e.g.,
multimedia applications), since their data is inherently com-
pressed. In Fig. 3(a), we analyzed the percentage of cache
lines with its compression ratio exceeding the threshold of
14.1% for several SPEC2006 benchmarks, bbench for a mobile
benchmark, and the FTL benchmark called DFTL [26]. For the
compression algorithm, we used B�I and FPC. When cache
line accesses are requested to DRAM, the compressor in the
memory controller compresses or decompresses on a cache
line basis.

In short, the applicability of a compression scheme is
highly dependent on the characteristics of applications, as
shown in Fig. 3(a). For instance, libquantum shows a com-
pression ratio less than 15%, while the compression ratios of
DFTL and bbench are 89% and 98%, respectively. It is obvi-
ous that outstanding compression algorithms will show better

HONG et al.: LoComp SCHEME FOR HIGHLY RELIABLE EMBEDDED SYSTEMS 457

(a) (b)

Fig. 3. Compressible cache lines ratio and row buffer miss ratio for some
benchmarks. (a) Compressible cache lines ratio. (b) Row buffer miss ratio.

performance, since they generate less leftovers. Many previous
works have already discussed the importance of compression
engines [22].

Next, we analyzed the impact of the data layout in embed-
ded ECCs from a spatial locality perspective. Typically, the
total size of the row buffer of DRAM chips is 8 KB, which
corresponds to 128 cache lines. If the application has a strong
spatial locality, 128 cache lines in a row buffer can be fetched
with a single open row operation. However, spatial local-
ity is damaged by the metadata in embedded ECCs because
some cache lines have to be moved to overflow row(s), which
increases row activation and the row buffer miss ratio. In
Fig. 3(b), two solid lines (square for ECC DIMM and rhombus
for MemZip, a deterministic offset approach) clearly show the
impaired spatial locality due to the embedded ECC. The miss
rate indicated by the solid line with square markers is opti-
mal, since the inherent spatial locality of each application is
not disturbed by the metadata, such as ECCs in ECC DIMM.
Reduced spatial locality in embedded ECC is inevitable due
to the leftovers which do not satisfy the given compression
threshold. The row buffer miss ratio in MemZip decreases
by an average 18% compared to the optimal ratio. A similar
trend can be observed with the pointer-based method, even
though the row buffer miss ratio is lower compared to the
deterministic offset method.

If we reorganized the layout to place the data cache line and
corresponding metadata in the same row, the row miss ratio
drops to a level similar to the optimal (difference under 3%),
as shown by the dotted line with circle markers in Fig. 3(b).
Finally, this example shows the importance of managing meta-
data such as CFs. The dashed line with triangle markers shows
the impact of the flag cache to exploit the temporal locality of
CFs. For applications such as bbench, bzip2, and libquantum,
the row buffer miss ratio of MemZip is comparable to that
of ECC DIMM by compensating the impaired spatial locality
with the temporal locality. But it also shows that the flag cache
is effective only for applications that show strong temporal
behavior.

To summarize, data layout is a crucial design parame-
ter of embedded ECC systems for the spatial locality of
DRAM row buffer as well as compression ratio. Temporal
locality exploitation using flag cache can further enhance
the performance of the system, especially when the applica-
tions show highly temporal behavior. The proposed LoComp

(a) (b)

Fig. 4. Memory access flow with the controller of LoComp. (a) Write flow.
(b) Read flow.

synergistically integrates these three design parameters and its
details will be discussed in Section IV.

IV. LOCOMP DESIGN

LoComp is a generalized approach that can be integrated
with any memory controller. In Fig. 4, we illustrate the
read and write flows of a memory controller equipped with
LoComp, respectively. The write flow of LoComp is shown
in Fig. 4(a). Once a host processor issues a write request,
the memory controller holds the request in a queue. While
the request is in the queue, LoComp compresses a cache line
to make space for ECC, similar to COP. In the compressor,
LoComp enhances the B�I algorithm to make more com-
pressible blocks for cache lines containing the packed data
structures or random variables. At the same time, LoComp
performs address translation to identify the location of the data
to be placed. LoComp provides the data layout with minimal
impact on locality and fits a compressed cache line, ECC, and
CF into a same row buffer of DRAM. In contrast, existing
approaches such as COP and MemZip break the row locality
and increase DRAM access time. After these two operations,
the ECC encoder generates ECCs and both CFs and ECCs are
cached in LoComp. In contrast, only one of them is cached in
existing approaches. In the final step, all these data are writ-
ten sequentially to the corresponding memory location. At this
time, LoComp exploits the partial write of a single byte unit to
reduce read–modify–write operations for 1-byte CFs through
controlled chip select (CS) signals, while the granularity of
data masking is 8 bytes in conventional DRAMs. Note that
LoComp is implemented in a pipelined fashion. Therefore, its
latency penalty is marginal when it handles burst requests. The
read behavior, which is the reverse of write flow, is also shown
in Fig. 4(b).

A. ECC Algorithm

LoComp does not employ the chipkill ECC algorithm
but the SECDED algorithm for area efficiency in embedded
systems. Table I shows the failure in time (FIT) compari-
son between (72, 64) SECDED for LoComp and (136, 128)
In-memory SECDED for commercial LPDDR4 [27]. The sim-
plified error model assumes randomness of bit flips, and
the probability of a single-bit error in one hour is referred
from [28]. (72, 64) SECDED reduces FIT by 56% compared

458 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 3, MARCH 2019

TABLE I
ERROR PROBABILITY ACCORDING TO ECC ALGORITHMS

to (136, 128) SECDED of LPDDR4 that is popularly used in
embedded systems for low power. Since (72, 64) SECDED
of LoComp shows lower FIT than the commercial in-memory
SECDED of LPDDR4, it ensures that DRAM is sufficiently
reliable for embedded systems.

Although the raw FIT that corrupts adjacent column cells
is 1.4 × 10−4 times lower than that of a single-bit error [8],
it is possible to extend LoComp to support ECC algorithms
for multibit error correction due to its flexibility. For instance,
LoComp can provide (532, 512) or (542, 512) BCH codes
for two-bit or three-bit error correction, respectively, in a
64B cache line. Their FIT is lower than (72, 64) SECDED
as shown in Table I. However, BCH requires long decod-
ing latency and hardware overhead to solve an error location
polynomial. LoComp can also provide an interleaving tech-
nique [29], [30] for burst error correction up to 8-bit per a
64B cache line because interleaving is an orthogonal technique
to LoComp.

B. Compression Algorithm

The B�I compression algorithm is designed for word-level
aligned data representation. Fig. 5 shows the typical B�I for-
mat, where the base is the first 4B (or 8B) data chunk of each
cache line. Every 4B (or 8B) chunk succeeding the base can
be compressed as 1B � by computing the difference between
the base and each chunk. The basic assumption in this algo-
rithm is that the dataset is aligned in word level, which is
quite reasonable for modern computer architectures. However,
the programming model in many embedded systems allows
misaligned data representation by packing data for memory
efficiency [31]. For instance, structures and/or structure arrays
are good packing candidates. The top example in Fig. 6(a)
shows that the start address of the Structure array is misaligned
with the compression chunk due to the 1B packed variable.
This misalignment diminishes the similarity between a base
word and delta words in B�I. To resolve this problem, OB�I
of LoComp considers an offset field prior to the base field,
as shown in Fig. 6(b). To adjust the misalignment, the size of
offset field varies from 1B to 3B.

Another effective feature of OB�I is data masking for
highly incompressible data. This feature is effective even for
word-level aligned data representation. OB�I also considers
the case where a structure is aligned but has a random variable,
as the second example depicted in Fig. 6(a). The Structure
array will have low similarity with this variable owing to its
randomness. A simple example of this case is the array for
time logging, where the LSB of logged time is random. On
the other hand, the similarity of the MSB excluding the LSB is
high. Eventually, more structures turn into compressible data
if the LSB is masked. For byte-level masking, OB�I provides
the second format shown in Fig. 6(b). Though a masked byte

Fig. 5. Typical B�I formats.

(a)

(b)

Fig. 6. OB�I formats and compression examples. (a) Examples for
the packed structure, and the structure including a incompressible random
variable. (b) Optimized B�I formats.

remains in a delta field, its compression efficiency improves
when the MSBs of the 4B chunks in a cache line show similar-
ity. The performance improvement of OB�I will be discussed
in detail in Section V-B. Although OB�I enhances compres-
sion ratio, OB�I increases comparators in the compressor by
four times compared to single-base B�I, but has the same
hardware overhead as multiple-base B�I [18]. In addition,
this hardware overhead of the compressor can be reduced by
75% by pipelined implementation for a 64-bit system bus.
The decompressor of OB�I requires marginal hardware over-
head, since each algorithm selectively operates with a common
decompressor.

LoComp provides another compression algorithm, FPC for
achieving higher compression ratio. LoComp uses a 3-bit
prefix to indicate the compressed formula of every word,
which is similar to the original FPC introduced in [21].

To distinguish the compression formats, LoComp requires
slightly higher compression ratio compared to conventional
B�I and FPC. While a 64B cache line must be compressed
to less than or equal to 56B to have the space for 8B ECC
in conventional B�I or FPC, LoComp requires a cache line
to be compressed to less than or equal to 55B and utilizes
1B to store compression information. More specifically, the
1B compression information consists of the MSB indicating
the compression algorithm and the remaining bits indicating
the submechanism of each compression algorithm. LoComp
executes both compression algorithms in parallel and takes the
higher compression result, like other compression schemes.

C. Data Layout in DRAM Row Buffer

LoComp provides the deterministic layout for compress-
ible cache lines regardless of the compression ratio for simple
address calculation. Therefore, it requires a total redundancy
of 14.3%, which includes 12.5% and 1.8% of ECCs and CFs,
respectively. Moreover, LoComp provides the specialized data

HONG et al.: LoComp SCHEME FOR HIGHLY RELIABLE EMBEDDED SYSTEMS 459

(a)

(b)

Fig. 7. LoComp physical layout for ECC and CF. (a) LoComp physical
layout in a row. (b) Sequence of cache lines in a chip0.

layout to improve performance by considering the following
two localities.

First, the data layout should not break the physical address
sequence of the cache line to prevent redundant row acti-
vations. However, the address translation of embedded ECC
schemes often breaks this sequence. Typically, this address
translation raises the hardware overhead, such as a divider.
If the number of cache line in a row is 112, it is not a
power of two. To eliminate the division overhead, Mini-rank
uses CRM [23], which requires only two modular calcula-
tions instead of division. However, it impairs row locality
since the cache lines of contiguous physical addresses exist
in separate rows. To resolve this issue, BCRM [9] adds a bias
factor to CRM. LoComp follows BCRM to calculate primitive
addresses of the cache line.

Second, to avoid impairing row locality for all memory
accesses, including ECCs or CFs, LoComp places a data cache
line with its corresponding ECC and CF in the same row. With
this layout, it is possible to fetch each data cache line with
a single open row, even in the worst case where these three
types of access occur consecutively. Fig. 7(a) depicts a row of
chip0 in an 8 × 8 chips architecture, shown in Fig. 2. A row
consists of 112 cache lines, 14 ECC lines, and two CF lines,
as shown in Fig. 7(a). CL0 represents the first 8B data among
a 64B cache line in a row of chip0, while ECC represents the
8B ECC which are eight parities corresponding to eight CL0.
CF0 and CF1 correspond to the CFs—each for 56 sequential
cache lines, respectively.

CRM and BCRM map a given address x into a pair of inte-
gers (u, v) with 0 ≤ x ≤ p·m−1, only if p and m are coprime.
Assuming that the address scheme is row:bank:column and a
full address is d, the generalized formulas of BCRM are as
follows:

x = d � S, o = d mod 2S (1)

b(x) = (x − (x mod m)) mod 2B

r(x) = ((x − (x mod m)) � B) mod 2R (2)

c(x, o) = ((x mod m) � S) + o

where 2S is the cache line number in subrow, 2B is the number
of bank, and 2R is row number in a bank. The subrow address
x, and the offset address o in a subrow is defined as (1). In (2),
b(x) is the bank address and r(x) is the row address, where m
is the coprime number with 2(B+R) and c(x, o) is the primi-
tive column address. For example, assuming that the memory
consists of one bank with four rows as shown in Fig. 7(b), a
row consists of seven subrows and each subrow has 16 cache
lines. In other words, 2R is 4 and m is 7 in (1). Although the
sequence of rows is changed (0 → 3 → 2 → 1), the sequence
has no impact on row locality and the sequentiality of cache
lines within a row lasts.

In addition to maintaining the locality of cache line with
BCRM, LoComp extends BCRM formulas as defined in (3) to
prevent damage to the row locality of memory access, includ-
ing ECCs or CFs. Each column address for data cache line
ECC and CF is dc(x, o), ec(x, o), and fc(x, o), where C, E,
F, and T are the number of data cache lines, ECC lines, CF
lines, and total lines in a row, respectively. CH is the number
of data cache line in a half row and 2P is the number of ECCs
in an ECC line

dc(x, o) =
{

c(x, o) if c(x, o) < CH

c(x, o)+EH +FH otherwise

ec(x, o) =
{

(c(x, o)�P)+CH if c(x, o) < CH

(c(x, o)�P)+C+FH otherwise
(3)

fc(x, o) =
{

TH −1 if c(x, o) < CH

T−1 otherwise.

Although the row size of commercial DRAMs is 8K,
LoComp aligns data, ECC, and CF lines with 4K in 8K
rows to support fine-grained row architecture, as shown in
Fig. 7(b). Recent works have proposed different implementa-
tions of fine-grained DRAM architecture to reduce latency or
energy [32], [33]. Basically, these prior works reduced the row
size to 4K. In embedded or mobile systems that are targets of
LoComp, latency and energy are important metrics. Therefore,
LoComp aligns the data layout with 4K to make it suitable for
fine-grained DRAM architecture.

The modular calculation of 2n involves the selection of LSB
bits in a binary word of length n. The simple implementation
of this is bit masking. The modular calculation of 7 is sim-
plified by adders and some registers [34]. Moreover, the shift
operation is implemented by a bitwise connection and the add
operation is a bitwise concatenation of the modular result and
o as the bottom equation of (3). Since other add operations
are arithmetic calculations with constants, we can implement
address mapping logic with small HW overhead.

D. Request Management

Each cache line requires a 1-bit CF which indicates whether
a cache line is compressible or not. LoComp protects CF with
(8,4) SECDED for reliability. For this purpose, LoComp uti-
lizes an 8-bit codeword followed by three reserved bits which
are padded by zeros. Also, m is chosen as 3, since the (8, 4)
Hamming code provides lower undetected error probability
than when m is 2 [24]. Fig. 8(a) shows that a 64B CF line
includes flag bits for 56 cache lines. LoComp supports both
four chips with narrow bandwidth organization, as well as two

460 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 3, MARCH 2019

(a)

(b)

Fig. 8. CF layout. (a) For 8 ×8 chips. (b) For 4 ×8 chips.

Fig. 9. Write timing for partial write of CF.

chips with wide bandwidth organization to tradeoff power effi-
ciency and performance. Fig. 8(b) shows the layout of CF for
four-chip organization. If a cache line is compressible, a 64B
cache line is split into two 32B burst accesses with a 32-bit
channel width and requires one CF line access.

Even if a cache line is incompressible, LoComp provides
the access efficiency of metadata using two request manage-
ment methods. First, LoComp manages the metadata with two
separate small caches. If a read request is issued for incom-
pressible data, LoComp accesses three columns to read a CF
line, an ECC line, and a data cache line in the worst case.
When an incompressible read request enters the controller in
8 × 8 chips organization with a 64-bit data bus, LoComp has
to consume the unnecessary bandwidth (56B ECC and 63B
CFs) for other cache lines. This is because the default burst
length of commercial DDR3 is eight. To avoid this inefficiency,
LoComp includes small ECC and flag caches in the memory
controller, as shown in Fig. 4. The size of the ECC cache is
256B and consists of four blocks, each with the size 64B. The
size of the flag cache is 252B and it has 36 blocks of 56-bit
size. The size of a block in the flag cache is exactly matched to
the number of decoded flag bits in a 64B CF line. To prevent
performance degradation, the flag cache has more blocks than
the ECC cache because LoComp always accesses the CF for
every data request, unlike ECCs.

However, when a write request is incompressible and ECC
or flag cache miss occurs, LoComp should perform read–
modify for the fetched ECC or CF line and write each evicted
line to the main memory. To enhance performance by reducing
unnecessary access, LoComp first uses the data mask (DM)
signal of a DDRx specification. Each DM bit can mask data
bytes (DQ) for any cycle of the burst, but DM can only be used
for the ECC partial write and not for CF because the minimum

(a)

(b)

Fig. 10. Logical layout for a cache line. (a) For LoComp. (b) For LoComp+.

masking granularity is 8 bytes in the 8 × 8 chips. To reduce
the granularity of the partial write without additional DM pins,
LoComp exploits the CS signal. In conventional DRAMs, the
CS signal is active-low and always in a low state. In contrast,
LoComp controls the CS and DM signal for the 1B partial
write. Fig. 9 illustrates the timing of a single request to write
1B CF of chip0 partially with CS and DM. First, LoComp
disables the CS signal of chips except chip0 to mask chip1 to
chip7 during Active and WR/RD commands. LoComp enables
DM of chip0 to mask all data except the third data during the
burst transfer. The implementation overhead for controlling the
CS signal is small because CS does not require high-speed IO
pads, such as DQ or DQS pads.

E. LoComp+: Enhanced LoComp for CF Management

When a cache line is compressible and a flag cache miss
occurs, LoComp needs to access DRAM twice—one for a CF
line and one for a data line including ECC. To eliminate the
access for CF, we propose a modified LoComp data layout
called LoComp+. A few previous works have attempted to
reduce the overhead of CF access. For instance, COP relies
on the probability of the Hamming code for this purpose.
However, it cannot avoid the inherent overhead for manag-
ing the aliasing cache lines in LLC. FECC avoids overhead
by placing the ECC flag in the data field. Although this feature
enables FECC to access the memory only once for compress-
ible cache lines, FECC has two critical limitations. One is
the predetermined addressing of leftovers without consider-
ing locality. The other is the need to fetch leftovers from the
memory controller to the LLC, which increases the system bus
traffic and does not support reliable swap operation directly
with I/O devices.

We compare the logical data layouts of LoComp and
LoComp+ in Fig. 10. The major change in LoComp+ com-
pared with LoComp is the location of the 1B flag field. More
specifically, the CF is located at the first LSB in LoComp+.
This relocation of CF requires a higher compression ratio for
the compressible cache line, since 1B in the data field has to
be used for CF. However, the increase in compression ratio

HONG et al.: LoComp SCHEME FOR HIGHLY RELIABLE EMBEDDED SYSTEMS 461

Fig. 11. Cumulative compressible ratio with compression schemes.

TABLE II
SIMULATION PLATFORM CONFIGURATION

for the compressible line is marginal, meaning that the overall
ratio of compressible ratios is rarely affected. With this lay-
out, it is possible to fetch the compressible cache line with a
single memory access. In the case of an incompressible cache
line, LoComp+ places the 1B leftover of 64B data in the flag
field, while LoComp places the flag and its ECC in the flag
field. Therefore, there are four blocks of 64B in the flag cache
of LoComp+, which is different from the number and size of
blocks in LoComp. Although LoComp+ requires higher com-
pression ratio and has fewer blocks for the same cache size,
performance improvement through metadata relocation is sig-
nificant. The detailed simulation results will be presented in
Section V-C.

V. EXPERIMENTS

A. Experimental Setup

We evaluated LoComp in the GEM5 simulation environ-
ment [19]. We used the ARM core configuration of GEM5
for mimicking embedded or mobile systems. We have inte-
grated DRAMSim2 [20] into GEM5 to accurately evaluate
the impact of LoComp on DRAMs. The simulator config-
uration used in our experiments is summarized in Table II.
We implemented the proposed compression algorithms in the
DRAMSim2 wrapper of GEM5 and modified the address
transaction of DRAMSim2 to verify the improved performance
of LoComp. We used the DRAM timing parameters of Micron
DDR3 datasheet [35].

For our simulations, we employed various workloads which
are memory-intensive applications. As shown in Table III,
there are 23 workloads from SPEC2006 benchmarks [36] with
reference inputs, as well as the PARSEC benchmark [37] with
larger inputs than a medium-sized input. We also used the
DFTL workload to evaluate LoComp with SSD applications.
DFTL is one of the FTLs using page-level address mapping.

TABLE III
WORKLOADS

We also used bbench [38] to appreciate the performance of
LoComp in an Android environment. The bbench is a bench-
mark that tests a browser’s page rendering performance. For
each workload, we simulated over 5 million memory requests
for each benchmark from the boot time of the Ubuntu Natty
or Android ICS OS. To avoid the initialization effect owing
to the compressible all zero data or the boot process, the
performance statistics are calculated for the last 4 million
requests. Although all zero data with high compression ratio
is favorable to LoComp, we discarded first 1 million or more
requests to obtain practical compression results. The 4 million
requests were taken from 0.4 billion to 11 billion CPU cycles,
depending on the benchmarks.

B. Evaluation of Compression Algorithms

Whenever DRAM requests enter the DRAMSim2 wrapper,
the simulator determines whether the request is compressible
or not according to compression algorithms. Fig. 11 shows the
cumulative compressible ratio using each compression algo-
rithm. Compressibility improved by an average 5% for the
whole benchmarks by adjusting misaligned compression tar-
gets. In particular, there is improvement of up to 10% in the
DFTL workload because it has lots of packed data structures
and mapping tables. Some benchmarks showed poor com-
pressibility during simulations. In bzip2, compressibility was
less than 50% because bzip2 was the compression application
and half of the data used in memory was already compressed
by this application. Libquantum and omnetpp showed less
compressibility compared to other benchmarks because the
incompressible data for the quantum computing algorithm and
Ethernet network events were accessed, respectively, by the
CPU during the evaluation time. Although high compressibil-
ity is important for LoComp to improve performance, another
purpose of LoComp is to further improve the performance of
benchmarks with poor compressibility by reducing memory
access. Fig. 12 shows the stacked ratio of compressible cache

462 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 3, MARCH 2019

Fig. 12. Breakdown of compression scheme for different benchmarks.

Fig. 13. Breakdown of OB�I for different benchmarks.

lines for each compression algorithm except all zero patterns.
Since all compression algorithms can compress the cache line
of all zero patterns, it is meaningful to analyze compres-
sion algorithms by excluding all zero patterns. The proportion
of cache lines compressed by B�I, OB�I, and FPC are
54%, 8%, and 38%, respectively. Fig. 13 shows the stacked
ratio of compressible cache lines for the two optimizations
of OB�I, except for the benchmarks that have no improve-
ment with OB�I. Among the increased compressible cache
lines by OBDI, the improvement due to optimization with
the offset averaged 82% and the improvement using the mask
was 18%.

Since LoComp+ requires 1B extra free space than LoComp
to place the encoded CF within data fields, it increases the
minimum threshold of the compression ratio from 14.1% to
15.6%. Fig. 14 shows that LoComp+ has 0.8% fewer com-
pressible cache lines than LoComp. The slight difference of
0.8% did not affect performance. In short, LoComp+ can
enhance performance by eliminating CF access in the case of
compressible cache lines. As the exceptional application, the
compressible ratio decreased by 7.5% in the omnetpp bench-
mark. For this benchmark, LoComp+ decreased performance
by 10% compared with LoComp.

C. Performance Results

For the performance evaluation, we compared six SECDED
ECC schemes. The two ECC schemes are ECC DIMM and
E3CC. ECC DIMM showed the best performance since the
inherent locality of each cache line was not disturbed by the
metadata. Therefore, the DRAM access time of ECC schemes
was normalized to ECC DIMM. E3CC is an embedded ECC
scheme that considers locality. Other two schemes were COP
and MemZip, which exploited compression. We included these
schemes in the experimental group to evaluate the differences
in performance according to data layout and request manage-
ment. The remaining methods are our proposed LoComp and
LoComp+. The ECC schemes except ECC DIMM adopted the
cache for ECCs or CFs. E3CC includes the 512B ECC cache,
which is the smallest cache size among previous studies. To
evaluate the schemes under the same conditions, we set the

Fig. 14. Proportion of compressible cache lines for 14.1% and 15.6%
minimum compression ratio.

maximum cache size for each scheme to 512B, and the same
compression algorithms were applied to these ECC schemes.
COP should keep L1, L2, and L3 valid bit blocks to find an
empty ECC entry. Therefore, we assigned part of the cache for
valid bit blocks and the rest excluding valid bit blocks in the
512B cache is used for ECC entries. We evaluated MemZip
with the 512B flag cache because MemZip utilizes only one
metadata cache. LoComp and LoComp+ include the 256B
ECC cache and 252B flag cache. We decided on the cache
size in a heuristic way to obtain the best performance. In addi-
tion, we evaluated the ECC schemes under the environment
where ECC schemes cannot utilize the LLC. We already men-
tioned why the request manager or the compression engine
for ECCs and CFs cannot be located with the LLC in
Section I.

1) DRAM Access Time: Fig. 15 shows the measured
DRAM access time of the selected benchmarks. Compared
to ECC DIMM, E3CC increased DRAM access time by 68%
for the whole benchmarks, while COP and MemZip increased
it by an average of 81% and 110%, respectively. Even though
COP and MemZip utilized compression algorithms, these
schemes had greater overhead than the pure embedded ECC,
E3CC, because some applications have compressible cache
lines less than 50%, as well as break the row locality. In con-
trast, LoComp and LoComp+ showed the least performance
degradation, at 48% and 33%, respectively. More specifically,
LoComp+ showed DRAM access time similar to ECC DIMM
in dftl, bbench, mcf, sjeng, bwaves, and milc benchmarks.
This indicates that LoComp+ can maintain both data reli-
ability and execution time similar to ECC DIMM without
additional ECC chips. Interestingly, LoComp and LoComp+
had lower access time compared to ECC DIMM, at 22% and
26%, respectively, in gcc benchmarks, since their reorganized
data layout accelerated the bank interleaving while maintaining
row locality. In contrast, COP increased DRAM access time
by over three times compared to ECC DIMM because it sig-
nificantly impaired the locality of a data sequence to access
ECC entries.

2) Performance Sensitivity to Compression Ratio:
Fig. 16(a) shows the proportion of compressible cache lines
and DRAM access time normalized to ECC DIMM. The line
graphs of COP and MemZip indicate no correlation between
the portion of compressible cache lines and DRAM access
time because these schemes have long DRAM access time
for several applications. This long access time is attributed to
their breaking of the row locality while accessing leftovers
and/or metadata. MemZip showed exceptional performance
degradation of up to three times to access the extra row,

HONG et al.: LoComp SCHEME FOR HIGHLY RELIABLE EMBEDDED SYSTEMS 463

Fig. 15. Comparison of DRAM access time normalized to ECC DIMM between LoComp and prior ECC schemes.

(a)

(b)

(c)

Fig. 16. Effect of compressibility, flag cache, and request pattern on
performance. (a) Effect of the portion of compressible cache lines. (b) Effect
of the hit ratio of flag cache. (c) Effect of the request pattern.

breaking locality even when benchmarks have high compress-
ibility, such as cactusADM and sjeng. As a noticeable case, the
fluidanimate benchmark has low compressibility of less than
65% and MemZip often accessed the data row and separated
the extra row alternately. Therefore, MemZip has 3.5 times
longer access time. On the other hand, the accessed data were
within the same row under the data layout of LoComp. The
line graphs of LoComp and LoComp+ gradually decreased as
compressible cache lines increased, except for libquantum and
bzip2 benchmarks. As expected, these benchmarks had fewer
compressible cache lines, but LoComp and LoComp+ showed
access times similar to benchmark results that were compress-
ible by at least 80%. This is because these benchmarks have
high locality.

3) Performance Variation With Cache and Request Pattern:
Fig. 16(b) plots the hit ratios of a flag cache and DRAM access
times of each ECC scheme. The hit ratio is one of the tem-
poral locality indices. Although COP has an ECC cache and
MemZip has a metadata cache, these schemes break the spatial
locality when they access the physical address of data, ECC
and CF sequentially. This is why the line graphs of COP and
MemZip were not correlated with the cache hit ratio. E3CC
has moderate correlation with the hit ratio of the flag cache
because it has only an ECC cache and the number of blocks in
the ECC cache is less than the number of flag caches. LoComp
and LoComp+ were significantly correlated with the hit ratio
of the flag cache, except for the benchmarks with high com-
pressibility, such as mcf, astar, and dftl. LoComp+ showed
enhanced performance compared to LoComp for benchmarks
with flag cache hit ratio less than approximately 50%. If the
hit ratio increased, LoComp had slightly less DRAM access
time compared to LoComp+ because of the high hit ratio
within the flag cache. On the other hand, in cactusADM and
sjeng, LoComp+ significantly reduced access time compared
to LoComp because these benchmarks have high compress-
ible ratio, and LoComp+ does not have to access CF lines
for the compressible cache line. As shown in these applica-
tions, even when the application has low temporal locality,
LoComp+ can overcome this drawback with high compression
ratio and compression-aware data layout in order to improve
performance.

LoComp and LoComp+ were not affected by a request
pattern as shown in Fig. 16(c). They increased access time
exceptionally in the omnetpp benchmark. It is not that the
proposed schemes were affected by a request pattern but that
both the compressible ratio and hit ratio of the flag cache were
less than 50% in these benchmarks. However, COP decreased
performance as the ratio of write increased. This is because
COP needed to retrieve the existing pointer for every write
request to determine the address of an ECC entry for an incom-
pressible cache line, or to invalidate the existing pointer for a
compressible cache line.

D. HW Overhead and Power Results

We synthesized the logic of compression and address
translation using Synopsys design/power compiler in 32-nm
technology. The area of the compressor/decompressor for
OBI and FPC was 31944 μm2, and their power consumption
was 20.01 mW at 1 GHz. The area and power consump-
tion for address translation of each scheme are less than 2%

464 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 3, MARCH 2019

TABLE IV
AREA AND POWER OVERHEAD NORMALIZED TO ECC DIMM

(a)

(b)

Fig. 17. Normalized power consumption in detail. (a) Normalized ACT/PRE
power consumption. (b) Normalized Burst power consumption.

of the compressor/decompressor. We also estimated the area
and power consumption of the cache using CACTI 6.5 [39].
The area of the 512B cache was 6335 μm2, and its power
consumption was 5.55 mW in 32-nm technology. Table IV
summarizes the hardware overhead and performance improve-
ment of LoComp. Each value is normalized to ECC DIMM.
The total area increased for DRAM controller of LoComp was
38666 μm2, which was less than 1% compared to the 6 mm2

of a commercial 1-channel DRAM controller including PHY.
The area of a commercial DRAM controller was derived with
32-nm processor [40]. And the total power overhead was 26.05
mW, which was about 2.6% compared to 1000 mW of ARM
cores in the DRAM access behavior model [41]. For fair com-
parison with the prior works, we equally set the cache size and
applied the same compressor for each scheme, while E3CC had
only the cache overhead. In off-chip DRAM side, since ECC
DIMM only required an additional ECC chip, other schemes
reduced the DRAM chip array by 11.1% and eliminated the
refresh power for the ECC chip. DRAM power indicates the
sum of the burst, bank activation (ACT)/precharge (PRE), and
refresh power for each scheme.

LoComp and LoComp+ had less performance degradation
as well as reduced DRAM power as shown in Table IV because
these ECC schemes reduced redundant access for leftovers
and/or metadata. Most especially, power efficiency is in ACT
and burst operations with the power breakdown. Fig. 17(a)
plots the ACT/PRE power consumption of each ECC scheme
normalized to baseline, which is the power of ECC DIMM.
E3CC, COP, and MemZip have average power consumption
of 3%, 11%, and 4%, respectively, over the baseline. In con-
trast, LoComp shows the same ACT/PRE power consumption
as E3CC. As expected, E3CC and LoComp consumed less

power to activate the row of DRAM compared to COP and
MemZip because E3CC and LoComp did not impair the orig-
inal locality of a data sequence. LoComp+ further reduced
ACT/PRE power consumption to baseline. Fig. 17(b) shows
the burst power consumption of each ECC scheme normal-
ized to the baseline. The average power consumption of E3CC,
COP, and MemZip for the whole benchmarks was 35%, 14%,
and 56% greater, respectively, than the baseline. In contrast,
LoComp and LoComp+ consumed relatively less burst power,
at 23% and 7%, respectively, over the baseline. This is because
the cache utilization of LoComp and LoComp+ was opti-
mized for both leftovers and metadata. Moreover, LoComp
and LoComp+ decreased the write granularity to eliminate the
read–modify–write operations, as described in Section IV-D.

VI. CONCLUSION

DRAM reliability is required not only in server systems
or data centers, but also in embedded systems, such as an
enterprise SSD. In this paper, we proposed a novel ECC
scheme using compression methods, which overcomes draw-
backs such as damage of locality and costly read–modify–
write operations for redundant access. The proposed LoComp
leveraged the benefits of compression, data layout for local-
ity, and metadata management to improve performance with
the embedded ECC scheme. These three orthogonal factors
make LoComp an effective solution for DRAM reliability
and performance issues in embedded systems. In addition,
LoComp allows 10% more compression cache lines by opti-
mizing the typical compression engine in dftl benchmarks.
The performance evaluation with contemporary ECC schemes
shows how the compressible ratio, cache hit ratio, and request
pattern affect DRAM access time. In the experiment, LoComp
increased DRAM access time by 48% normalized to the
baseline. However, previous studies have shown increased
overhead, relatively from 68% to twice the value com-
pared to baseline. Moreover, LoComp+ enhanced performance
through the reorganized layout and there was an additional
performance improvement of 15% compared to LoComp.
Consequently, LoComp and LoComp+ minimized the over-
head for the reliability of dense data structures in DRAMs
without redundant ECC chips.

REFERENCES

[1] Y. Kim et al., “Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors,” in Proc. 41st Annu.
Int. Symp. Comput. Archit., Minneapolis, MN, USA, 2014, pp. 361–372.

[2] T. J. Dell, A White Paper on the Benefits of Chipkill-Correct ECC for PC
Server Main Memory, IBM Microelectron. Div., New York, NY, USA,
1997.

[3] B. Jacob, S. W. Ng, and D. T. Wang, Memory Systems: Cache, DRAM,
Disk. Burlington, MA, USA: Morgan Kaufmann, 2010.

[4] A Comparison of Client and Enterprise SSD Data Path Protection.
Accessed: Sep. 2016. [Online]. Available: https://www.micron.com

[5] Intel Solid-State Drive DC S3500 Series. Accessed: Oct. 2016. [Online].
Available: http://www.intel.com

[6] H. Zheng et al., “Mini-rank: Adaptive DRAM architecture for improv-
ing memory power efficiency,” in Proc. 41st IEEE/ACM Int. Symp.
Microarchit. (MICRO), Nov. 2008, pp. 210–221.

[7] D. H. Yoon and M. Erez, “Virtualized and flexible ECC for main
memory,” in Proc. 15th Ed. ASPLOS Archit. Support Program. Lang.
Oper. Syst., Pittsburgh, Pennsylvania, USA, 2010, pp. 397–408.

HONG et al.: LoComp SCHEME FOR HIGHLY RELIABLE EMBEDDED SYSTEMS 465

[8] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis, and
N. P. Jouppi, “LOT-ECC: Localized and tiered reliability mechanisms for
commodity memory systems,” in Proc. 39th Annu. Int. Symp. Comput.
Archit., Portland, OR, USA, 2012, pp. 285–296.

[9] L. Chen, Y. Cao, and Z. Zhang, “E3CC: A memory error protec-
tion scheme with novel address mapping for subranked and low-power
memories,” ACM Trans. Archit. Code Optim., vol. 10, no. 4, pp. 1–22,
Dec. 2013.

[10] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression for
high-performance processors,” in Proc. 31st Annu. Int. Symp. Comput.
Archit., Munich, Germany, Jun. 2004, pp. 212–223.

[11] L. Chen, Y. Cao, and Z. Zhang, “Free ECC: An efficient error protection
for compressed last-level caches,” in Proc. IEEE 31st Int. Conf. Comput.
Design (ICCD), Asheville, NC, USA, Oct. 2013, pp. 278–285.

[12] A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis, “MemZip:
Exploring unconventional benefits from memory compression,” in Proc.
IEEE 20th Int. Symp. High Perf. Comput. Archit. (HPCA), Orlando, FL,
USA, Feb. 2014, pp. 638–649.

[13] D. J. Palframan, N. S. Kim, and M. H. Lipasti, “COP: To compress
and protect main memory,” in Proc. ACM/IEEE 42nd Annu. Int. Symp.
Comput. Archit. (ISCA), Portland, OR, USA, Jun. 2015, pp. 682–693.

[14] J. Kim, M. Sullivan, S.-L. Gong, and M. Erez, “Frugal ECC: Efficient
and versatile memory error protection through fine-grained compres-
sion,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal.,
2015, pp. 1–12.

[15] Data Compression in the Intel� Solid-State Drive 520 Series. Accessed:
Sep. 2016. [Online]. Available: www.intel.com/go/ssd

[16] D. Kim et al., “Exploiting compression-induced internal fragmentation
for power-off recovery in SSD,” IEEE Trans. Comput., vol. 65, no. 6,
pp. 1720–1733, Jun. 2016.

[17] S. Lee et al., “Warped-compression: Enabling power efficient GPUs
through register compression,” in Proc. 42nd Annu. Int. Symp. Comput.
Archit., Portland, OR, USA, 2015, pp. 502–514.

[18] G. Pekhimenko et al., “Base-delta-immediate compression: Practical
data compression for on-chip caches,” in Proc. 21st Int. Conf. Parallel
Archit. Compilation Techn., Minneapolis, MN, USA, 2012, pp. 377–388.

[19] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, May 2011.

[20] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” IEEE Comput. Archit. Lett., vol. 10,
no. 1, pp. 16–19, Jan./Jun. 2011.

[21] A. R. Alameldeen and D. A. Wood, “Frequent pattern compression: A
significance-based compression scheme for L2 caches,” Dept. Comp.
Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Rep. 1500, 2004.

[22] S. Mittal and J. S. Vetter, “A survey of architectural approaches for data
compression in cache and main memory systems,” IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 5, pp. 1524–1536, May 2016.

[23] Q. S. Gao, “The Chinese remainder theorem and the prime memory
system,” in Proc. 20th Annu. Int. Symp. Comput. Archit., San Diego,
CA, USA, 1993, pp. 337–340.

[24] M. Gupta, J. S. Bhullar, and B. N. Bansal, “Undetected error proba-
bility of hamming code for any number of symbols,” in Proc. IEEE
Int. Conf. Inf. Theory Inf. Security (ICITIS), Beijing, China, Dec. 2010,
pp. 1015–1018.

[25] PM863a Enterprise SSD Samsung V-NAND SSD. Accessed: Aug. 2017.
[Online]. Available: http://www.samsung.com

[26] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A flash translation layer
employing demand-based selective caching of page-level address map-
pings,” in Proc. 14th Int. Conf. Archit. Support Program. Lang. Oper.
Syst., Washington, DC, USA, 2009, pp. 229–240.

[27] ECC Brings Reliability and Power Efficiency to Mobile Devices.
Accessed: Jul. 2017. [Online]. Available: https://www.micron.com

[28] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild:
A large-scale field study,” Commun. ACM, vol. 54, no. 2, pp. 100–107,
Feb. 2011.

[29] T. J. Dell, “System RAS implications of DRAM soft errors,” IBM J.
Res. Develop., vol. 52, no. 3, pp. 307–314, May 2008.

[30] Y. Q. Shi, X. M. Zhang, Z.-C. Ni, and N. Ansari, “Interleaving for
combating bursts of errors,” IEEE Circuits Syst. Mag., vol. 4, no. 1,
pp. 29–42, Aug. 2004.

[31] ARM Compiler Toolchain Compiler Reference. Accessed: Jan. 2017.
[Online]. Available: http://infocenter.arm.com/help/index.jsp

[32] N. D. Gulur, R. Manikantan, M. Mehendale, and R. Govindarajan,
“Multiple sub-row buffers in DRAM: Unlocking performance and
energy improvement opportunities,” in Proc. 26th ACM Int. Conf.
Supercomput., Venice, Italy, 2012, pp. 257–266.

[33] T. Zhang et al., “Half-DRAM: A high-bandwidth and low-power DRAM
architecture from the rethinking of fine-grained activation,” in Proc.
ACM/IEEE 41st Int. Symp. Comput. Archit. (ISCA), Minneapolis, MN,
USA, Jun. 2014, pp. 349–360.

[34] M.-H. Teng, “Comments on ‘the prime memory systems for array
access,”’ IEEE Trans. Comput., vol. C-32, no. 11, p. 1072, Nov. 1983.

[35] MT41j256m8 Data Sheet. Accessed: Oct. 2016. [Online]. Available:
http://www.micron.com/products/dram/

[36] SPEC CPU 2006. Accessed: Oct. 2016. [Online]. Available:
http://www.spec.org/cpu2006

[37] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Dept. Comput. Sci., Princeton Univ., Princeton, NJ, USA, Jan. 2011.
[Online]. Available: ftp://ftp.cs.princeton.edu/techreports/2010/890.pdf

[38] A. Gutierrez et al., “Full-system analysis and characterization of
interactive smartphone applications,” in Proc. IEEE Int. Symp.
Workload Characterization (IISWC), Austin, TX, USA, Nov. 2011,
pp. 81–90.

[39] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Architecting
efficient interconnects for large caches with CACTI 6.0,” IEEE Micro,
vol. 28, no. 1, pp. 69–79, Jan./Feb. 2008.

[40] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts, “A fully integrated
multi-CPU, GPU and memory controller 32nm processor,” in Proc. IEEE
Int. Solid-State Circuits Conf., San Francisco, CA, USA, Feb. 2011,
pp. 264–266.

[41] F. A. Ali, P. Simoens, T. Verbelen, P. Demeester, and B. Dhoedt, “Mobile
device power models for energy efficient dynamic offloading at runtime,”
J. Syst. Softw, vol. 113, pp. 173–187, Mar. 2016.

Juhyung Hong received the B.S. and M.S. degrees
in electrical and electronics engineering from Ajou
University, Suwon, South Korea, in 2002 and 2004,
respectively. He is currently pursuing the Ph.D.
degree with Yonsei University, Seoul, South Korea.

He is a Senior Engineer with Samsung
Electronics, Suwon. His current research interests
include system on chip, NAND flash-based
mass storage architecture, and memory system
architecture.

Jeongbin Kim received the B.S. degree in electrical
and electronic engineering from Yonsei University,
Seoul, South Korea, in 2010, where he is currently
pursuing the Ph.D. degree.

His current research interests include future
memory technology, NAND flash-based storage
architecture, and system architecture.

Sangwoo Han received the B.S. degree in electrical
and electronic engineering from Yonsei University,
Seoul, South Korea, in 2014, where he is currently
pursuing the Ph.D. degree.

His current research interests include system-
level architecture and design, and advanced storage
systems and applications.

Eui-Young Chung (M’06) received the B.S. and
M.S. degrees in electronics and computer engineer-
ing from Korea University, Seoul, South Korea, in
1988 and 1990, respectively, and the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, USA, in 2002.

From 1990 to 2005, he was a Principal Engineer
with SoC Research and Development Center,
Samsung Electronics, Yongin, South Korea. He is
currently a Professor with the School of Electrical
and Electronics Engineering, Yonsei University,

Seoul. His current research interests include system architecture and very large
scale integration design, including all aspects of computer-aided design with
special emphasis on low-power applications, and flash memory applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

